1 /*
2 * Copyright (C) 2011 The Guava Authors
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 package com.google.common.math;
18
19 import static com.google.common.math.MathPreconditions.checkNonNegative;
20 import static java.lang.Math.log;
21
22 import com.google.common.annotations.GwtCompatible;
23 import com.google.common.annotations.VisibleForTesting;
24 import com.google.common.primitives.Booleans;
25
26 /**
27 * A class for arithmetic on doubles that is not covered by {@link java.lang.Math}.
28 *
29 * @author Louis Wasserman
30 * @since 11.0
31 */
32 @GwtCompatible(emulated = true)
33 public final class DoubleMath {
34 /*
35 * This method returns a value y such that rounding y DOWN (towards zero) gives the same result
36 * as rounding x according to the specified mode.
37 */
38
39 private static final double MIN_INT_AS_DOUBLE = -0x1p31;
40 private static final double MAX_INT_AS_DOUBLE = 0x1p31 - 1.0;
41
42 private static final double MIN_LONG_AS_DOUBLE = -0x1p63;
43 /*
44 * We cannot store Long.MAX_VALUE as a double without losing precision. Instead, we store
45 * Long.MAX_VALUE + 1 == -Long.MIN_VALUE, and then offset all comparisons by 1.
46 */
47 private static final double MAX_LONG_AS_DOUBLE_PLUS_ONE = 0x1p63;
48
49 /**
50 * Returns the base 2 logarithm of a double value.
51 *
52 * <p>Special cases:
53 * <ul>
54 * <li>If {@code x} is NaN or less than zero, the result is NaN.
55 * <li>If {@code x} is positive infinity, the result is positive infinity.
56 * <li>If {@code x} is positive or negative zero, the result is negative infinity.
57 * </ul>
58 *
59 * <p>The computed result is within 1 ulp of the exact result.
60 *
61 * <p>If the result of this method will be immediately rounded to an {@code int},
62 * {@link #log2(double, RoundingMode)} is faster.
63 */
64 public static double log2(double x) {
65 return log(x) / LN_2; // surprisingly within 1 ulp according to tests
66 }
67
68 private static final double LN_2 = log(2);
69
70 /**
71 * Returns {@code n!}, that is, the product of the first {@code n} positive
72 * integers, {@code 1} if {@code n == 0}, or {@code n!}, or
73 * {@link Double#POSITIVE_INFINITY} if {@code n! > Double.MAX_VALUE}.
74 *
75 * <p>The result is within 1 ulp of the true value.
76 *
77 * @throws IllegalArgumentException if {@code n < 0}
78 */
79 public static double factorial(int n) {
80 checkNonNegative("n", n);
81 if (n > MAX_FACTORIAL) {
82 return Double.POSITIVE_INFINITY;
83 } else {
84 // Multiplying the last (n & 0xf) values into their own accumulator gives a more accurate
85 // result than multiplying by everySixteenthFactorial[n >> 4] directly.
86 double accum = 1.0;
87 for (int i = 1 + (n & ~0xf); i <= n; i++) {
88 accum *= i;
89 }
90 return accum * everySixteenthFactorial[n >> 4];
91 }
92 }
93
94 @VisibleForTesting
95 static final int MAX_FACTORIAL = 170;
96
97 @VisibleForTesting
98 static final double[] everySixteenthFactorial = {
99 0x1.0p0,
100 0x1.30777758p44,
101 0x1.956ad0aae33a4p117,
102 0x1.ee69a78d72cb6p202,
103 0x1.fe478ee34844ap295,
104 0x1.c619094edabffp394,
105 0x1.3638dd7bd6347p498,
106 0x1.7cac197cfe503p605,
107 0x1.1e5dfc140e1e5p716,
108 0x1.8ce85fadb707ep829,
109 0x1.95d5f3d928edep945};
110
111 /**
112 * Returns {@code true} if {@code a} and {@code b} are within {@code tolerance} of each other.
113 *
114 * <p>Technically speaking, this is equivalent to
115 * {@code Math.abs(a - b) <= tolerance || Double.valueOf(a).equals(Double.valueOf(b))}.
116 *
117 * <p>Notable special cases include:
118 * <ul>
119 * <li>All NaNs are fuzzily equal.
120 * <li>If {@code a == b}, then {@code a} and {@code b} are always fuzzily equal.
121 * <li>Positive and negative zero are always fuzzily equal.
122 * <li>If {@code tolerance} is zero, and neither {@code a} nor {@code b} is NaN, then
123 * {@code a} and {@code b} are fuzzily equal if and only if {@code a == b}.
124 * <li>With {@link Double#POSITIVE_INFINITY} tolerance, all non-NaN values are fuzzily equal.
125 * <li>With finite tolerance, {@code Double.POSITIVE_INFINITY} and {@code
126 * Double.NEGATIVE_INFINITY} are fuzzily equal only to themselves.
127 * </li>
128 *
129 * <p>This is reflexive and symmetric, but <em>not</em> transitive, so it is <em>not</em> an
130 * equivalence relation and <em>not</em> suitable for use in {@link Object#equals}
131 * implementations.
132 *
133 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
134 * @since 13.0
135 */
136 public static boolean fuzzyEquals(double a, double b, double tolerance) {
137 MathPreconditions.checkNonNegative("tolerance", tolerance);
138 return
139 Math.copySign(a - b, 1.0) <= tolerance
140 // copySign(x, 1.0) is a branch-free version of abs(x), but with different NaN semantics
141 || (a == b) // needed to ensure that infinities equal themselves
142 || (Double.isNaN(a) && Double.isNaN(b));
143 }
144
145 /**
146 * Compares {@code a} and {@code b} "fuzzily," with a tolerance for nearly-equal values.
147 *
148 * <p>This method is equivalent to
149 * {@code fuzzyEquals(a, b, tolerance) ? 0 : Double.compare(a, b)}. In particular, like
150 * {@link Double#compare(double, double)}, it treats all NaN values as equal and greater than all
151 * other values (including {@link Double#POSITIVE_INFINITY}).
152 *
153 * <p>This is <em>not</em> a total ordering and is <em>not</em> suitable for use in
154 * {@link Comparable#compareTo} implementations. In particular, it is not transitive.
155 *
156 * @throws IllegalArgumentException if {@code tolerance} is {@code < 0} or NaN
157 * @since 13.0
158 */
159 public static int fuzzyCompare(double a, double b, double tolerance) {
160 if (fuzzyEquals(a, b, tolerance)) {
161 return 0;
162 } else if (a < b) {
163 return -1;
164 } else if (a > b) {
165 return 1;
166 } else {
167 return Booleans.compare(Double.isNaN(a), Double.isNaN(b));
168 }
169 }
170
171 private DoubleMath() {}
172 }
173